“本文将重点介绍x16测试要求的RF开关配置,这些开关型号将支持最多18条通路(PCIe最高一般是x16),也将支持较低的通路数。推荐用硬电缆在不同开关组件之间建立固定连接,硬电缆可以向Mini-Circuits索取获得。本文前面给出了CEM测试图,但这些技术也适用于BASE测试。
”
作者:泰克科技
全面表征高速链路,要求透过被测链路的多条不同通路执行发射机(Tx)和接收机(Rx)测量,这给全自动测试环境带来了挑战。PCI Express端口的通路宽度一般为x1、x4、x8和x16,这给全自动Tx或Rx测试带来了挑战。通过在测试通道中包括RF开关,我们可以在不过度改变DUT和测试设备电缆的情况下实现多路测试。为使RF开关的电气影响达到最小,确保测试对规范要求或验证测试计划是真实的。本文描述了使用Mini-Circuits RF开关进行Gen5 (32 GT/s)多路测试,并就设置、自动测试提供了一些整体指引,并就通常遇到的挑战提出了建议。
本文将重点介绍x16测试要求的RF开关配置,这些开关型号将支持最多18条通路(PCIe最高一般是x16),也将支持较低的通路数。推荐用硬电缆在不同开关组件之间建立固定连接,硬电缆可以向Mini-Circuits索取获得。本文前面给出了CEM测试图,但这些技术也适用于BASE测试。
图1: ZTM2-8SP6T-40。 图2: ZT-8SP6T-40 4U/5U。
图1显示了ZTM2-8SP6T-40模块化开关矩阵,拥有8个40GHz端接的SP6T机械开关。这一配置将支持最多18条通路。推荐使用相位匹配的电缆,在相邻的40 GHz继电器之间建立固定连接。在没有为直通连接打开继电器时,会有50W端接。
图2显示了ZT-8SP6T-40 4U/5U开关矩阵,拥有8个40GHz端接的SP6T机械开关。这一配置将支持最多18条通路。推荐使用硬电缆,在相邻的40 GHz继电器之间建立固定连接。开关组件在这个矩阵中的方位,在所有输入和输出之间保持类似的电气路径长度。这对多路Rx测试尤其有吸引力,以使校准和测试之间的路径到路径差异降到最小。在没有为直通连接打开继电器时,会有50W端接。
RF开关矩阵 – Gen5 Tx测试
PCIe Gen5器件(系统主机或插件)将在多路端口中表现出不同的发射机性能。通常要验证所有通路,以便全面表征链路,识别硅性能、近端或远端串扰过高、布线缺陷等问题。在测试设置中采用RF开关 (图3)可以实现多路Tx验证,而且不用工程师或技术人员不断改变连接。32 GT/s Base Tx测试(参见图10)的连接与此类似。
图3: 32 GT/s CEM系统发射机(多路)。
系统主机配置要求把一块一致性测试负载电路板(CLB)插入DUT的CEM连接器中,要求使用电缆从每条通路连接RF开关。插件配置与此类似,但DUT插入一致性测试基本电路板(CBB)中。一对电缆把端接的开关矩阵向回连接到50 GHz示波器。任意波形发生器(AFG)之类的仪器可以自动生成要求的100MHz突发信号,令DUT循环通过不同发射机测量使用的各种数据速率和码型。
开关设置中进行的每个连接都非常重要。由于有插损,所以不建议串联两个以上的继电器进行32 GT/s Tx测试。建议在DUT和RF开关之间使用1米2.92mm电缆,在RF开关和示波器输入之间使用0.5米2.92mm电缆。可以使用示波器差分快速边沿,配合TekExpress软件执行自动通道到通道时延校正。通道中所有电缆、继电器和PCB匹配范围都应落在正负信号路径+/- 1ps范围内。
保持RF开关的50W(100W差分)连接输入/输出将使通道内部的反射达到最小,但会引入部分插损。32 GT/s信号质量测试不要求实体可变ISI电路板(Gen4测试则要求),因此要求在示波器上嵌入额外的通道和封装损耗。应执行测试夹具表征(5.0 PHY测试规范附录B中描述),包括RF开关。基本上会选择一个损耗较低的滤波器文件,实现最坏情况插件损耗(在测试系统主机时)或最坏情况系统损耗(在测试插件时)。可以使用泰克SignalCorrect解决方案检验通道损耗,包括RF开关矩阵,而不是使用昂贵的VNA。
可以使用基于散射参数(S参数)的反嵌技术,去掉RF开关插损的影响。反嵌导致复杂性提高,但改善了准确度,另外还必须考虑噪声放大的影响。如果在继电器到继电器连接之间使用相位匹配的电缆,那么通道到通道间只存在小的电气差异。如果觉得这些差异会影响测量,那么可以考虑自定义通道S参数文件。可以使用SignalCorrect或矢量网络分析仪(VNA)捕获S参数文件,另外也可以由泰克现场项目组提供标称S参数文件。
RF开关矩阵 – Gen5 Rx测试
图4: 32 GT/s CEM Rx测试点。
PCIe Gen5器件(系统或插件)接收机使用精细校准的压力眼图信号进行测试。这个“最坏情况”信号是通过多个校准步骤在参考平面(没有通道)建立的,且使用的“最坏情况”通道必须在34 dB ~37 dB @ 16 GHz。本节将讨论怎样在Rx测试时在这个信号校准中采用端接的RF开关,然后通过多路链路测试DUT。
在TP3测试点校准幅度、Tx均衡、随机抖动和正弦曲线抖动要求直接连接Anritsu MP1900A BERT PPG和泰克50 GHz示波器。建议使用1米2.92mm电缆(如泰克产品号:PMCABLE1M)完成这一连接。图5显示了TP3校准连接,这一步中没有包括RF开关。由于RF开关引入了部分电通道差异,因此建议在TP3参考平面前不要包括这一影响。
图5: 32 GT/s TP3压力眼图(基本和CEM)。
在TP2P使用差模干扰(DMI)、共模干扰(CMI)和最后的压力眼图校准串扰项。这个测试点来自TP2之后(BERT和示波器之间的物理通道),但TP2P包括封装嵌入及Rx均衡和时钟恢复的影响。图6在TP2校准中增加了RF开关,其中开关是在测试夹具(基本或CEM)后面引入的。在这个点上,工程师必须确定是需要单次TP2校准(建议用于ZT-8SP6T-40 4U/5U),还是需要两次以上的TP2校准(最好考虑ZTM2-8SP6T-40不同的电气路径长度)。不建议级联两个以上的继电器进行32 GT/s压力眼图校准。
表6: 32 GT/s TP2压力眼图。
建议在BERT和RF开关之间使用1米2.92mm电缆,在RF开关和示波器之间使用短一点的0.5米2.92mm电缆。可以使用示波器差分快速边沿,配合TekExpress软件执行自动通道到通道时延校正。通道中所有电缆、继电器和PCB匹配范围都应落在正负信号路径+/- 1ps范围内。
PCI Express Gen5:自动多路测试
保持RF开关的50W(100W差分)连接输入/输出将使通道内部的反射达到最小,但会引入部分插损。32 GT/s信号质量测试不要求实体可变ISI电路板(Gen4测试则要求),因此要求在示波器上嵌入额外的通道和封装损耗。应执行测试夹具表征,包括RF开关。基本上会选择一个损耗较低的滤波器文件,实现最坏情况插件损耗(在测试系统主机时)或最坏情况系统损耗(在测试插件时)。可以使用泰克SignalCorrect解决方案检验通道损耗,包括RF开关矩阵,而不是使用昂贵的VNA。
可以使用基于散射参数(S参数)的反嵌技术,去掉RF开关插损的影响。反嵌导致复杂性提高,但改善了准确度,另外还必须考虑噪声放大的影响。如果在继电器到继电器连接之间使用相位匹配的电缆,那么通道到通道间只存在小的电气差异。如果觉得这些差异会影响测量,那么可以考虑自定义通道S参数文件。可以使用SignalCorrect或矢量网络分析仪(VNA)捕获S参数文件,另外也可以由泰克现场项目组提供标称S参数文件。
在多条通路中使用校准后的32 GT/s压力眼图信号进行接收机测试要求两个RF开关矩阵,如图7所示。在链路是x8或更低的路数时,可以考虑单个RF开关矩阵。来自Anritsu MP1900A PPG的信号必须分发到所有PCIe通路中。器件将处于环回模式,因此数字化信号将通过Tx引脚传回,开关回至BERT误码检测器的单个输入。许多支持32 GT/s的系统会展现一条到误码检测器的高损耗返回通道,要求外部再驱动器均衡信号,以便被测试设备检测到。
图7: 32 GT/s系统Rx LEQ测试(多路)。
建议在BERT和RF开关之间使用1米2.92mm电缆,在RF开关和示波器之间使用短一点的0.5米2.92mm电缆。应在DUT Tx和误码检测器之间考虑使用最短的2.92mm电缆。
怎样与Mini-Circuits建立通信
TekExpress TX自动化软件提供了内置控制功能,在自动TX测试过程中控制Mini-Circuits开关矩阵。用户开发自己的自动化软件,在TX或RX测试过程中控制RF开关。怎样连接:可以通过两种方式与Mini-Circuits开关通信:USB使用dll (动态链接程序库);以太网HTTP请求。
基本校准和测试图
图8: 32 GT/s基本根或非根Tx (多路)。
图9: 32 GT/s基本Rx测试点。
图10 32 GT/s TP2压力眼图。
图11: 32 GT/s系统Rx LEQ测试(多路)。
分享到:
猜你喜欢