中国电子技术网

设为首页 网站地图 加入收藏

 
 

轻松实现复杂的电源时序控制

关键词:电源时序控制 基准电压源

时间:2024-06-27 15:03:17      来源:ADI

微控制器、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、模数转换器(ADC)以及以多个电压轨供电的其他器件都需要电源时序控制。这些应用通常要求,内核和模拟模块在数字输入/输出(I/O)轨之前上电,不过有些设计可能要求采用其他序列。正确的上电和关断时序控制可以防止闩锁引起的即刻损坏和静电放电(ESD)引起的长期损坏。另外,对电源实施时序控制还可在上电期间错开浪涌电流,在采用限流电源供电的应用中,这一特性特别有用。

微控制器、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、模数转换器(ADC)以及以多个电压轨供电的其他器件都需要电源时序控制。这些应用通常要求,内核和模拟模块在数字输入/输出(I/O)轨之前上电,不过有些设计可能要求采用其他序列。正确的上电和关断时序控制可以防止闩锁引起的即刻损坏和静电放电(ESD)引起的长期损坏。另外,对电源实施时序控制还可在上电期间错开浪涌电流,在采用限流电源供电的应用中,这一特性特别有用。

本应用笔记探讨采用分立式元件对电源进行时序控制的优缺点,同时还将描述利用ADP5134,的内部精密使能引脚实现时序控制的一种简单而有效的方法。ADP5134将2个1.2A降压调节器与2个300mA低压差(LDO)调节器结合起来。本应用笔记同时还将描述一些序列器IC,它们可能对要求更为精确和灵活的时序控制这类应用更有帮助。

图1所示的应用要求使用多个供电轨。这些供电轨分别为内核电源(V CCINT )、I/O电源(V CCO )、辅助电源(V CCAUX )和系统存储器电源。


图1.处理器和FPGA的典型供电方法

例如,Xilinx ® Spartan-3A FPGA集成了上电复位电路,该电路确保在所有电源均达到阈值之后,才允许对器件进行配置。上电复位电路降低了对电源时序控制的严格要求;但是,为了尽量降低浪涌电流水平,同时考虑连接到FPGA的电路的时序控制要求,必须按以下序列给供电轨上电:先是V CCINT ,然后是V CCAUX 最后是V CCO 。请注意,有些应用要求遵循特定序列;因此,请务必参看相关数据手册电源要求部分。

利用无源延迟网络实现简单的电源时序控制

对电源实施时序控制的一种简单办法是用无源元件延迟进入调节器使能引脚的信号,此类无源元件包括电阻、电容、二极管等,如图2所示。当开关闭合时,D1导通,D2断开。C1充电,EN2的电压以取决于R1和C1的速率上升。当开关断开时,C1通过R2、D2和R PULL 放电至地。EN2的电压以取决于R2、R PULL 和C1的速率下降。改变R1和R2的值,将改变充电和放电时间,从而设定调节器的开启和关闭时间。


图2.利用电阻、电容和二极管实现的简单电源时序控制方法

这种方法可以用于不要求进行精密时序控制的应用。只需延迟信号的应用可能只需要外部电阻和电容。在标准调节器中使用这种方法的劣势在于,使能引脚的逻辑阈值可能随电压和温度而大幅变化。另外,电压斜坡中的延迟取决于电阻和电容的值和容差。在–55°C至+85°C的温度范围内,典型X5R电容的变化幅度约为±15%,而受直流偏置效应影响,变化幅度还会增加±10%,这个偏差会使时序失去准确性,有时还会变得不可靠。

精密使能引脚简化时序控制

为了实现精密时序控制所需的稳定阈值水平,多数调节器要求采用一个外部基准电压源。ADP5134通过集成一个精密基准电压源克服了这个问题,同时还可大幅节省成本和减少印刷电路板(PCB)面积。每个调节器都有一个单独的使能输入引脚。

当使能输入引脚的电压升至ENx引脚上升阈值(V IH_EN [0.9V最小值])以上时,器件退出关断模式,管理模块开启,但不会激活调节器。器件将使能输入引脚的电压与一个精密内部基准电压(典型值为0.97V)进行比较。当使能引脚的电压升至精密使能阈值以上时,调节器激活,输出电压开始上升。在输入电压和温度转折点,基准电压源变化幅度只有±3%。这么小的变化范围确保了时序控制的精确性,解决了使用分立式元件时存在的问题。

当使能输入引脚的电压下降到比基准电压低80mV(典型值)时,调节器停用。当所有使能输入引脚的电压都降至ENx下降阈值(V IL_EN [0.35V最大值])以下时,器件进入关断模式。在该模式下,功耗降至1µA以下。图3和图4展示了ADP5134精密使能阈值在整个温度范围内针对BUCK1的精度。


图3.整个温度范围内的精密使能开启阈值(10个样本)


图4.整个温度范围内的精密使能关闭阈值(10个样本)

利用分阻器实现简单的电源时序控制

通过将一个调节器经过衰减的输出连接到下一个要上电的调节器的使能引脚,可以对多通道电源进行时序控制,如图5所示,其中,调节器按顺序开启或关闭:从BUCK1到BUCK2,再到LDO1,最后到LDO2。图6显示了在将EN1连接到VIN1之后的上电序列。图7所示为在将EN1从VIN1断开后的关断序列。


图5.利用ADP5134实现的简单时序控制


图6.ADP5134启动序列


图7.ADP5134关断序列

序列器IC提高时序精度

在某些情况下,实现精密时序比减少PCB面积、节省成本更重要。对于这类应用,可以使用电压监控和序列器IC,如ADM1184四通道电压监控器,后者在电压和温度范围内的精度达±0.8%。另一种选择是带可编程时序的ADM1186四通道电压序列器和监控器;该器件可用于要求对上电和关断序列进行更精准控制的应用。

例如,ADP5034 4通道调节器集成了2个3MHz、1200mA降压调节器和2个300mA LDO。可以利用ADM1184实现典型的时序控制功能,用于监控一个调节器的输出电压,并在受监控的输出电压达到某个水平时,向下一个调节器的使能引脚提供一个逻辑高信号。如图8所示,这种方法可用于不提供精密使能功能的调节器。


图8.利用ADM1184四通道电压监控器对ADP5034 4通道调节器进行时序控制

结论

利用ADP5134精密使能输入引脚进行时序控制非常简单,实现起来也很方便,每个通道只需要2个外部电阻即可。借助ADM1184或ADM1186电压监控器,可以实现更加精确的时序控制。

  • 分享到:

 

猜你喜欢

  • 主 题:英飞凌汽车方案引领智能座舱新纪元
  • 时 间:2025.03.12
  • 公 司英飞凌&品佳集团