中国电子技术网

设为首页 网站地图 加入收藏

 
 

5V电平信号与3.3V电平信号转换问题及方法

关键词:电平信号 信号转换 通信速度

时间:2020-04-15 11:25:17      来源:网络

现在低压、低耗器件越来越多,3.3v、2.1v电平信号越来越常见。这就存在了一个电平转换问题。

  现在低压、低耗器件越来越多,3.3v、2.1v电平信号越来越常见。这就存在了一个电平转换问题。

  当然很多时候都不需要转化,一些器件具有较大的包容性。具体能不能包容多种电平需要查看IC手册。如果能容忍其相异的电压,就不需要交转换单元了。

  加上转换电路肯定会对通信速度、稳定性有所限制。

  转化前要注意两个地方。

  1、ABSOLUTE MAXIMUM RATINGS

  这个是保证IC安全、健康的限制参数,应用连接时千万别超过这个范围。比如:DVDD(模拟电源)对DGND(模拟地)电压范围是 -0.3V到+6.0V ;数字I/O口电压对地电压范围是 -0.3V到+vdd+0.3V 。

  2、需不需要电平信号转换单元就看下面这个参数:

  可见这个IC的数字逻辑输入低电平门限<0.7V(3.3V情况);高电平门限>2V(3.3V情况);当然这些参数都是限制在ABSOLUTE MAXIMUM RATINGS的。

  下面转入正题,看看电平转换方法。

  1、较低电平转较高电平(比如3.3V转5V):

  “低”接较低电平信号;“高”接较高电平信号。

  两个晶体管,保证两端信号极性一致。

  2、较高电平转较低电平(比如5转3.3V):

  分析:当“高”处(+5V电平信号)输出为逻辑1,二极管截至(相当于断开),低处被上拉到约+3.3V。

  当“低”处(+5V电平信号)输出为逻辑0,二极管导通,理想情况“低”处导通到0电压,实际“低”处电压是二极管导通压降(0.7V左右,如果觉得高,可以使用肖特基二极管,肖特基二极管管压降小)。

  有一些电平信号转换可以采用比较器,我以前在一个比较器手册上看过这种应用,也十分方便,就是成本有些高。

  我听一些网友说,可以在不同电平信号之间串一个小电阻解决问题。我也这样试过(3.3V的cyclon2与5V的单片机通信),好像能正常使用,不过总感觉不太安稳,呵呵。

  还有其他的一些方法总结如下:

  2.1 电阻分压

  利用电阻分压的方法,其原理如图1所示.其成本比较低并且结构简单,可以作为一种应急的方案.但是,该电路实际的输出电压显然要小于3.3V,并且随着负载的变化,输出电压也会产生波动.此外,这种电路的无功功耗也比较大.

  2.2 直接采用电源模块

  考虑到开关电源设计的复杂性,一些公司推出了基于开关电源技术的低电压输出电源模块.这些模块可靠性和效率都很高,电磁辐射小,而且许多模块还可以实现电源隔离.这些电源模块使用方便,只需增加很少的外围元件,但是价格比较昂贵.

  2.3 利用线性稳压电源转换芯片

  线性稳压芯片是一种最简单的电源转换芯片,基本上不需要外围元件.但是传统的线性稳压器,如LM317,要求输入电压比输出电压高2V或者更大,否则就不能够正常工作.因此对于5V的输入,输出并不能够达到3.3V.面对低压电源的需求,许多电源芯片公司推出了低压差线性稳压器(LDO).这种电源芯片的压差只有1.3V~0.2V,可以实现5V转3.3V的要求.LDO所需的外围器件数目少、使用方便、成本较低、纹波小、无电磁干扰.例如,TI公司的TPS73xx系列就是TI公司为配合DSP而设计的电源转换芯片,其输出电流可以达到500mA,且接口电路非常简单,只需接上必要的外围电阻,就可以实现电源转换.该系列分为固定电压输出的芯片和可调电压输出的芯片,但这种芯片通常效率不是很高.

  综合几种电源的优缺点,DSP系统采用LDO芯片TPS7333.此芯片是TI公司专门为3.3V低压系统设计的,它是固定输出3.3V,且有上电产生DSP系统复位所需的信号.此外它输出电流可达几百毫安,输出功率完全能够满足系统所需.具体电路如图2所示.

  3.3V转5V 电平转换方法参考

  电平转换

  晶体管+上拉电阻法

  就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。

  (2) OC/OD 器件+上拉电阻法

  跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。

  (3) 74xHCT系列芯片升压 (3.3V→5V)

  凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作 3.3V→5V 电平转换。

  ——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。

  廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表示 TTL 兼容)。

  (4) 超限输入降压法 (5V→3.3V, 3.3V→1.8V, ...)

  凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。

  这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。

  例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采用 3.3V 供电,就可以实现 5V→3.3V 电平转换。

  (5) 专用电平转换芯片

  最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。

  (6) 电阻分压法

  最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。

  (7) 限流电阻法

  如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。

  (8) 无为而无不为法

  只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。

  (9) 比较器法

  运放法/比较器少用。

  2. 电平转换的"五要素"

  (1) 电平兼容

  解决电平转换问题,最根本的就是要解决逻辑器件接口的电平兼容问题。而电平兼容原则就两条:

  VOH > VIH

  VOL < VIL

  再简单不过了!当然,考虑抗干扰能力,还必须有一定的噪声容限:

  |VOH-VIH| > VN+

  |VOL-VIL| > VN-

  其中,VN+和VN-表示正负噪声容限。

  只要掌握这个原则,熟悉各类器件的输入输出特性,可以很自然地找到合理方案,如前面的方案(3)(4)都是正确利用器件输入特性的例子。

  (2) 电源次序

  多电源系统必须注意的问题。某些器件不允许输入电平超过电源,如果没有电源时就加上输入,很可能损坏芯片。这种场合性能最好的办法可能就是方案(5)——164245。如果速度允许,方案(1)(7)也可以考虑。

  (3) 速度/频率

  某些转换方式影响工作速度,所以必须注意。像方案(1)(2)(6)(7),由于电阻的存在,通过电阻给负载电容充电,必然会影响信号跳沿速度。为了提高速度,就必须减小电阻,这又会造成功耗上升。这种场合方案(3)(4)是比较理想的。

  (4) 输出驱动能力

  如果需要一定的电流驱动能力,方案(1)(2)(6)(7)就都成问题了。这一条跟上一条其实是一致的,因为速度问题的关键就是对负载电容的充电能力。

  (5) 路数

  某些方案元器件较多,或者布线不方便,路数多了就成问题了。例如总线地址和数据的转换,显然应该用方案(3)(4),采用总线缓冲器芯片(245,541,16245...),或者用方案(5)。

  (6) 成本&供货

  前面说的164245就存在这个问题。"五要素"冒出第6个,因为这是非技术因素,而且太根本了,以至于可以忽略。

  RS232的电平是多少呢?

  RS232电平发送器为+5V~+15V为逻辑负,-5V~-15V为逻辑正

  接收器典型的工作电平在+3~+12V与-3~-12V。由于发送电平与接收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20kb/s。RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3~7kΩ。所以RS-232适合本地设备之间的通信。

  RS485的电平是多少呢?

  发送驱动器A、B之间的正电平在+2~+6V,是一个逻辑状态1,负电平在-2~-6V,是另一个逻辑状态0。(具体数值可能有误,回头测试一下!)

  当在收端AB之间有大于+200mV的电平时,输出正逻辑电平,小于-200mV时,输出负逻辑电平。接收器接收平衡线上的电平范围通常在200mV至6V之间。

  TTL电平是多少呢?

  TTL电平为2.0V~5V为逻辑正,0~0.8V为逻辑负

  CMOS电路的电平是多少?

  CMOS电平:

  输出逻辑1电平电压接近于电源电压,逻辑电平0接近于0V。而且具有很宽的噪声容限。

  输入逻辑1电平电压大于电源电压的1/2 VCC~VCC;

  输入逻辑0电平电压小于电源电压的1/2 VCC~gnd;

  高电平低电平是什么意思

  逻辑电平的一些概念

  要了解逻辑电平的内容,首先要知道以下几个概念的含义:

  1:输入高电平(Vih): 保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。

  2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。

  3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。

  4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。

  5:阀值电平(Vt): 数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平

  对于一般的逻辑电平,以上参数的关系如下:

  Voh > Vih > Vt > Vil > Vol。

  6:Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。

  7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。

  8:Iih:逻辑门输入为高电平时的电流(为灌电流)。

  9:Iil:逻辑门输入为低电平时的电流(为拉电流)。

  门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件:

  (1): RL < (VCC-Voh)/(n*Ioh+m*Iih)

  (2):RL > (VCC-Vol)/(Iol+m*Iil)

  其中n:线与的开路门数;m:被驱动的输入端数。

  :常用的逻辑电平

  ·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。

  ·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。

  ·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。

  ·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。

  ·低电压的逻辑电平还有2.5V和1.8V两种。

  ·ECL/PECL和LVDS是差分输入输出。

  ·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。

  • 分享到:

 

猜你喜欢

  • 主 题:PIC®和AVR®单片机如何在常见应用中尽展所长
  • 时 间:2024.11.26
  • 公 司:DigiKey & Microchip

  • 主 题:高效能 • 小体积 • 新未来:电源设计的颠覆性技术解析
  • 时 间:2024.12.11
  • 公 司:Arrow&村田&ROHM

  • 主 题:盛思锐新型传感器发布:引领环境监测新纪元
  • 时 间:2024.12.12
  • 公 司:sensirion

  • 主 题:使用AI思维定义嵌入式系统
  • 时 间:2024.12.18
  • 公 司:瑞萨电子&新晔电子