“运算放大器的增益带宽积(GBW)会怎样影响你的电路并不总是显而易见。宏模型有固定的增益带宽积。虽然你可以深入观察这些模型,当然最 好不要瞎弄它们。那么你可以做什么?
”运算放大器的增益带宽积(GBW)会怎样影响你的电路并不总是显而易见。宏模型有固定的增益带宽积。虽然你可以深入观察这些模型,当然最 好不要瞎弄它们。那么你可以做什么?
你可以使用SPICE中的通用放大器的模型来检测你的电路对增益带宽积的灵敏度。大多数基于SPICE的电路仿真器包含一个简单的运算放大器模型,因此你很容易就可以修改。TINA的仿真界面如图1所示。
首先将DC开环增益设置为1M(120dB)。然后,主极点的频率(单位为Hz)与其相乘将得到放大器的增益带宽积(单位为MHz)。在这个例子中,10Hz的主极点对应10MHz的增益带宽积。对于5MHz,10MHz和100MHz三种不同的增益带宽积,图2分别给出了对应的开环响应。
注意这个简单的模型存在第二个极点(有些人称它为不受欢迎的极点)。有时候,你会想要第二个极点处在一个非常高的频率,比如说10GHz。对于任何合理的增益带宽积,这将会形成一个理想的90°的相位裕量。在这个范例中,我将第二个极点设定为100MHz,等于我仿真时最 大的增益带宽积的值。在100MHz增益带宽积的响应中,你可以看到第二个极点的影响,它将会使得开环响应在100MHz的地方开始弯曲。它使得单位增益带宽大约为78MHz,和一个具有78MHz增益带宽积的运算放大器的情况很相似。运算放大器的单位增益带宽和增益带宽积并不一定是相同的值。
对于有源滤波器的设计,很难判断增益带宽积的需求,它是一个可以应用这种技术的很好的例子。图3中使用FilterPro来设计切比雪夫滤波器,它会给出一些增益带宽积值的推荐,然而它的设计准则可能会比一些情况更严格。对于这个设计而言,它推荐了100MHz或更大的增益带宽积来达到近乎理想的滤波器设计特性。如图2所示,我设定三种增益带宽积(5MHz,10MHz,100MHz)来对设计进行仿真。从结果中可以得出小于100MHz的增益带宽积已经是符合要求的。对于最 终的仿真,你应该使用你所选择的运算放大器的宏模型。
我使用了TINA中的参数步进功能,改变主极点从而改变增益带宽积。其它仿真器也有类似的功能。当然,也可以手动地修改参数。无论是哪种方式,改变通用运算放大器的增益带宽积将帮助你洞察增益带宽积对电路的影响。
分享到:
猜你喜欢