“能源互联网将会承托起人类低碳可持续发展的未来。虽然现在各国的架构路线有所差异,但最终目标是一致的。而在能源互联网的落地过程中,不论采用何种路线,感知技术都将在其中发挥至关重要的作用。
”能源互联网这一概念兴起于2010年前后,是指在传统能源系统中增加互联网技术,整合能源数据,实现规模电力消耗预测,优化电网运行以节省能耗。而今,我们提起能源互联网,已经远不止这么简单。随着近年来可再生能源、分布式储能、人工智能、区块链等技术的兴起,能源互联网将改变传统能源系统格局,真正实现能源的双向按需传输和动态平衡使用,并显著提升可再生能源的占比和使用效能。
据埃森哲的预计,从2018年至2050年,全球能源互联网累计总投资规模约38万亿美元,将释放出巨大的市场价值。从十几年前能源互联网概念提出到现在,真正的可再生、分布式、开放式、智能化的能源网络将会逐步趋于成熟,支撑起人类的可持续发展未来。
能源互联网
承托起人类可持续发展的未来
传统意义上,可以将电力网络中的能源主体简单地区分为“源”与“荷”两大类,但现在随着电动汽车、分布式储能系统、微电网和虚拟电厂等新的电力主体的引入,整个电力网络变得更为复杂。
发电侧
可再生能源比例不断提高,对于能源接入提出了更高的要求。分散在各地的可再生能源大规模集群,在能源产生上具有强波动性和随机性,需要更高弹性的分布式电网来消除这些问题。
用电侧
用户现在也可以通过自有的光伏设备、电动汽车等反向输电给中央电网,这就导致了用电侧的不确定性增加。总的来看,当前输配电系统呈现出多样化、分散化和差异化的特点,导致整个电力系统的调度工作难度倍增。
接下来,发电侧可再生能源比例还会继续提升,用电侧以直接用电来取代传统化石能源的趋势也会加速推进,可想而知电力系统的整体架构必将迎来新的变化,以适应日益复杂的统一调度要求。未来电力系统还要和包括冷、热、电在内的多能源系统耦合在一起,这势必会让整个能源互联网变得更加复杂。
图1:传统和新型能源系统对比(图源:Energy Atlas)
清华大学能源互联网创新研究院副院长陈启鑫在今年年初召开的“2022国家能源互联网大会”上曾分享,电力系统将会在多能源系统中扮演核心角色,为了应对一系列的挑战,电力系统要从以电力平衡为核心的传统运行机制,转变到以灵活性资源和需求平衡为核心的弹性运行机制。
感知技术
奠定能源互联网的智能基础
那么在能源互联网中,有哪些芯片层面的底层关键技术?我们或可将其大致划分为感知、计算、连接和功率转换几大类。
1 感知层面是奠定能源互联网的基础,只有精准的数据捕捉,才能为后续的计算环节提供有价值的数据输入。没有精准的感知,能源互联网的智能化也就无从谈起。
2 计算层面则需要对感知层面捕获的数据进行高效分析和处理,根据不同设备的不同算力需求,可以选择MCU、MPU、SoC、CPU等不同类型。
3 连接层面,需要结合不同场景灵活选择多种不同的通信技术,从而实现智能电网的互操作性,例如电力载波通信、低功耗广域通信、Wi-Fi、以太网通信等。
4 在功率转换层面,逆变器的应用非常广泛,其中也涉及到了SiC、GaN和IGBT等功率器件,以及各种不同电路拓扑。此外,由于涉及到了云端存储和计算,还需要高性能存储芯片和AI加速芯片的参与。
图2:智能电网中各种典型应用(图源:LEM)
要实现灵活高效的智能能源网络,需要将感知、计算、连接和功率转换等技术结合起来,而这其中,又以感知技术最为基础。
图3:智能电网传感器市场预估(图源:KBV Research)
什么样的芯片能够满足智慧能源互联网感知需求?
既然感知技术是奠定能源互联网的基础,那么到底什么样的感知芯片才能满足其应用需求?在此我们分别从AFE、电流感应放大器和温度传感器三个热门分类中,各自挑选一款芯片来推荐给大家。
AFE器件
在AFE的器件选型上,来自 Microchip的MCP3914 是不错的选择。这是一款八通道的计量ADC芯片。该器件的亮点在于通过内置8个同步采样ADC和8个PGA,实现了单一芯片的多通道数据监控,能够帮助客户显著降低产品成本和缩小设计尺寸。
此外,高达125ksps的可编程数据速率及多种低功耗模式使得设计人员可以显著降低方案功耗,或使用更高的数据速率来进行诸如计算谐波分量等高级信号分析。同时,MCP3914还具有CRC-16校验和寄存器映射锁存功能,大大提高了产品的稳健性。
图4:MCP3014的多相级连电表应用框图
(图源:Microchip)
MCP3914在贸泽电子官网上的具体产品料号为“ MCP3914A1T-E/MV ”,该型号具有拓展的温度范围,更适合严苛工业中应用。可以在贸泽电子官网上直接搜索该料号获取更多信息。
电流感应放大器
关于电流感应放大器,可以选择来自 TI的INAx290/INAx290-Q1 系列产品。该产品的特点在于极小的占板面积、超精密的检测精度和极低的功耗表现。
INAx290/INAx290-Q1能够在2.7V至120V宽共模范围内测量分流电阻器上的压降。该系列器件具有±12µV超低失调电压、±0.1%小增益误差以及160dB高直流CMRR,因此可实现超高精度的电流测量。同时该器件的SC-70封装占板面积仅2.0mm×2.1mm,可采用2.7V至20V单电源供电,电源电流消耗仅为370µA(典型值)。
此外,INAx290/INAx290-Q1不仅设计用于直流电流测量,还可用于带宽高达1MHz和85dB AC CMRR的高速应用(例如快速过流保护等)。
图5:INAx290典型应用框图
(图源:TI)
这款芯片在贸泽电子官网上的具体产品料号为“ INA290A5QDCKRQ1 ”,该型号能够满足车规级AEC-Q100标准可以通过贸泽电子官网查询获得更多信息。
图6:TMP114数字温度传感器框图(图源:TI)
结语
能源互联网将会承托起人类低碳可持续发展的未来。虽然现在各国的架构路线有所差异,但最终目标是一致的。而在能源互联网的落地过程中,不论采用何种路线,感知技术都将在其中发挥至关重要的作用。
关于贸泽电子
贸泽电子(Mouser Electronics)是一家全球知名的半导体和电子元器件授权代理商,分销超过1200家品牌制造商的680多万种产品,为客户提供一站式采购平台。我们专注于快速引入新产品和新技术,为设计工程师和采购人员提供潮流选择。欢迎关注我们!
分享到:
猜你喜欢