中国电子技术网

设为首页 网站地图 加入收藏

 
 

基于OFDM技术的LTE空中接口物理层的研究

关键词:OFDM技术 空中接口设计 无线网络

时间:2021-06-29 10:38:13      来源:电信技术

LTE是3GPP在2005年启动的新一代无线系统研究项目。LTE采用了基于OFDM技术的空中接口设计,目标是构建出高速率、低时延、分组优化的无线接入系统,提供更高的数据速率和频谱利用率。

1、概述

LTE是3GPP在2005年启动的新一代无线系统研究项目。LTE采用了基于OFDM技术的空中接口设计,目标是构建出高速率、低时延、分组优化的无线接入系统,提供更高的数据速率和频谱利用率。

整个系统由核心网络(EPC)、无线网络(E-UTRAN)和用户设备(UE)3部分组成,见上图。其中EPC负责核心网部分;E-UTRAN(LTE)负责接入网部分,由eNodeB节点组成;UE指用户终端设备。系统支持FDD和TDD两种双工方式,并对传统UMTS网络架构进行了优化,其中LTE仅包含eNodeB,不再有RNC;EPC也做了较大的简化。这使得整个系统呈现扁平化特性。

系统的扁平化设计使得接口也得到简化。其中eNodeB与EPC通过S1接口连接;eNodeB之间通过X2接口连接;eNodeB与UE通过Uu接口连接。


图1-1LTE系统网络架构

2、物理层过程

本文重点讨论LTE空中接口物理层的一些主要过程。

2.1下行物理层过程

2.1.1小区搜索过程

UE使用小区搜索过程识别并获得小区下行同步,从而可以读取小区广播信息。此过程在初始接入和切换中都会用到。

为了简化小区搜索过程,同步信道总是占用可用频谱的中间63个子载波。不论小区分配了多少带宽,UE只需处理这63个子载波。

UE通过获取三个物理信号完成小区搜索。这三个信号是P-SCH信号、S-SCH信号和下行参考信号(导频)。

一个同步信道由一个P-SCH信号和一个S-SCH信号组成。同步信道每个帧发送两次。

规范定义了3个P-SCH信号,使用长度为62的频域Zadoff-Chu序列。每个P-SCH信号与物理层小区标识组内的一个物理层小区标识对应。S-SCH信号有168种组合,与168个物理层小区标识组对应。

在获得了P-SCH和S-SCH信号后UE可以确定当前小区标识。

下行参考信号用于更精确的时间同步和频率同步。

完成小区搜索后UE可获得时间/频率同步,小区ID识别,CP长度检测。


图2.1.1-1小区搜索过程

2.1.2下行功率控制

下行功率控制适用于数据信道(PDSCH)和控制信道(PBCH、PDCCH、PCFICH和PHICH)。

eNodeB决定每个资源单元的下行发射功率。对于数据信道(PDSCH)方法如下:



2.1.2.1eNodeBRNTP限制

系统通过定义“RNTP(RelativeNarrowbandTXPower)”来支持可能进行的下行功率协调,该消息通过X2接口在基站间交换。

RNTPtreshold定义了一个门限,由RNTP(nPRB)以比特图的形式指示每个PRB将要使用的发射功率是否超过该门限。RNTP(nPRB)由下式确定:



nPRBPRB数目

EA:不包含参考符号的OFDM符号中的数据子载波的发射功率

EB:包含参考符号的OFDM符号中的数据子载波的发射功率

2.1.3寻呼–物理层面

寻呼用于网络发起的呼叫建立过程。有效的寻呼过程可以允许UE在多数时间处于休眠状态,只在预定时间醒来监听网络的寻呼信息。

在WCDMA中,UE在预定时刻监听物理层寻呼指示信道(PICH),此信道指示UE是否去接收寻呼信息。因为寻呼指示信息时长比寻呼信息时长短得多,这种方法可以延长UE休眠的时间。

在LTE中寻呼依靠PDCCH。UE依照特定的DRX周期在预定时刻监听PDCCH。因为PDCCH传输时间很短,引入PICH节省的能量很有限,所以LTE中没有使用物理层寻呼指示信道。

如果在PDCCH上检测到自己的寻呼组标识,UE将解读PDSCH并将解码的数据通过寻呼传输信道(PCH)传到MAC层。PCH传输块中包含被寻呼的UE的标识。未在PCH上找到自己标识的UE会丢弃这个信息并依照DRX周期进入休眠。

2.2上行物理层过程

2.2.1随机接入过程

层一的随机接入过程包括随机接入preamble的发送和随机接入响应。其余的消息不属于层一的随机接入过程。

2.2.1.1物理非同步随机接入过程

层一的随机接入过程包括如下步骤:

1.高层的preamble发送请求触发L1随机接入过程;

2.随机接入所需的preambleindex,目标preamble接收功率(PREAMBLE_RECEIVED_TARGET_POWER),相应的RA-RNTI和PRACH资源作为请求的一部分由高层指示;

3.preamble发射功率PPRACH由下式计算:



4.UE使用preambleindex在Preamble序列集中随机选择一个Preamble序列;

5.UE在指定的PRACH上以功率PPRACH发送选择的Preamble序列;

6.UE尝试在高层定义的接受窗口内使用RA-RNTI检测PDCCH。如果检测到,相应的PDSCH传输块被传输到高层。高层解读传输块并使用20比特UL-SCHgrant指示物理层。

2.2.1.2随机接入响应准许

高层使用20比特UL-SCHgrant指示物理层,这被称为物理层随机接入响应准许。20比特UL-SCHgrant的内容包括:

-跳频标识–1bit

-固定尺寸RB指派–10bits

-截短的MCS–4bits

-PUSCH的TPC命令–3bits

-UL迟延–1bit

-CQI请求–1bit

2.2.2CQI/PMI/RI的报告

UE用来报告CQI(ChannelQualityIndication)、PMI(PrecodingMatrixIndicator)和RI(RankIndication)的时频资源由eNB控制。报告方式有周期性和非周期性两种。UE可以使用PUCCH进行周期性报告,使用PUSCH进行非周期性报告。

CQI或PMI的最小计算和反馈单位为subband(约为2~8个RB,若系统带宽小于8个RB,不定义Subband),见表2.2.2-1。

表2.2.2-1:Subband尺寸(k)vs.系统带宽(onPUSCH)

CQI的计算与报告分为widebandCQI、UEselected(subbandCQI)和Highlayerconfigured(subbandCQI)三种。基站根据终端反馈的CQI和预测算法,选择数据传输的MCS,见表2.2.2.-2。

对于空间复用,UE需要确定一个RI值,对应有效的传输层数。对于发射分集,RI等于一。

表2.2.2-2:4-bitCQITable

2.2.3上行功率控制

上行功率控制用来控制不同上行物理信道的发射功率。这些物理信道包括物理上行共享信道(PUSCH)、物理上行控制信道(PUCCH)和Sounding参考符号。

2.2.3.1物理上行共享信道

物理上行共享信道PUSCH在子帧i的发送功率由下式确定:



2.2.3.2物理上行控制信道

物理上行控制信道PUCCH在子帧i的发射功率由下式确定:



2.2.4UEPUSCH跳频

如果PDCCH(DCI格式0)中的FH域设置为1,UE会进行PUSCH跳频。

PUSCH跳频意味着一个子帧中的两个时隙上行传输所用的物理资源不占用相同的频段。

进行PUSCH跳频的UE需要确定它的子帧的第一个时隙的PUSCH资源分配,其中包含PRB索引号。

当上行PUSCHhopping关闭,或者通过ULgrant实现hopping时,PUSCHPRB索引号等于ULgrant中分配的索引号;

当上行hooping开启时,PUSCHPRB索引号由ULgrant中分配的索引号和一个预定义的、与cellID相关的hoppingpattern来共同决定。

2.3Semi-Persistent调度

LTE中的动态调度提供了很大的灵活性但同时也产生了较高的信令负荷。对于较规则的低速业务,这种信令开销尤为明显。为了降低此类业务的信令负荷,3GPP定义了一个新的概念:semi-persistent调度。这种调度概念的思想是对于较规则的低速业务(例如VoIP),对较长时间内的资源使用进行分配,而无需每次传输时都进行动态分配,以节省信令开销。所有HARQ重传使用动态调度。图2.3-1显示了semi-persistent调度的概念和HARQ重传。

下行方向规范允许基于盲检测的semi-persistent调度,即事先预配置少数几种格式(编码、调制和物理资源的组合),在配置的子帧中可以使用任何预配置的格式。UE需要进行盲检测来确定子帧中使用的是哪一个预配置的格式。但上行方向规范只允许一个格式,即不允许盲检测。

  • 分享到:

 

猜你喜欢

  • 主 题:英飞凌XMC4000支持EtherCAT®通讯的伺服/IO控制方案介绍
  • 时 间:2024.04.25
  • 公 司:英飞凌&骏龙科技

  • 主 题:安森美数字助听芯片的创新
  • 时 间:2024.05.09
  • 公 司:安森美

  • 主 题:IO-Link 技术介绍及相关设计解决方案
  • 时 间:2024.05.22
  • 公 司:ADI & Arrow