中国电子技术网

设为首页 网站地图 加入收藏

 
 

基于DSP技术和USB通信技术相结合实现数据采集系统的设计

关键词:DSP技术 数据采集系统 时钟频率

时间:2020-08-18 10:26:53      来源:网络

如今,数据采集系统很多,有基于数字信号处理器DSP设计的,也有基于现场可编程门阵列FPGA设计的,这些采集系统尽管采集处理数据能力不差,但大多都采用传统授时模式。

  如今,数据采集系统很多,有基于数字信号处理器DSP设计的,也有基于现场可编程门阵列FPGA设计的,这些采集系统尽管采集处理数据能力不差,但大多都采用传统授时模式。

  而异地同步测量是工程中经常用到的方法,如果用传统的授时模式,其时钟频率的产生是用晶体,而晶体会老化,易受外界环境变化及长期的  漂移影响,造成授时  下降,这样异地同步测量的数据其实在理论上已经不再同步、同时了。本系统采用GPS新型授时方法,结合DSP技术和USB通信技术设计的数据采集系统能较好地解决这个问题。

 

  数据采集系统模拟量输人、同步采样控制、A/D转换以及微处理器和接口组成,如图1所示。

  基于DSP技术和USB通信技术相结合实现数据采集系统的设计

  模拟量输入部分设有多个通道(如16路),可用来对若干路电压和若干路电流同时测量。来自PT或CT副边的电压或电流,经隔离变换、模拟低通滤波后,被建立在GPS时间基准上的同步采样系统所采样,经依次A/D转换后按顺序放入固定RAM区。DSP根据递归DFT算法,每来一个新的采样点计算  所有被测量的各相基波分量,然后利用GPS接收器串口提供的时间信息和数据窗  个采样点的顺序编号,给计算结果置以便于识别的“时间标签”。计算得出的各相量连同其时间标签按照一定的数据格式,经过DSP总线和USB2.0数据线送往PC上位机进行处理和分析。

  基于GPS授时的同步采样控制单元

  同步采样是实现异地同步测量的关键技术,只有各测量点的采样是同步进行的,同一时刻计算出的相量具有统一的参考时问基准,其相位关系才可直接进行比较。本文讨论了无线电广播、LORANC、OMEGS、GOES、GLO-NASS、GPS这六种不同的授时方法。这些授时方法的误差比较如表1所列。

  

通过比较不难看出,传统的时钟同步方法由于受技术和经济等因素的影响,在  和实用性上很难满足异地同步测量的要求;只有GPS精密授时方法的优越性能满足要求。为此,本文所介绍的是一种基于GPS时间信号的  时钟同步方法。

  系统简介

  (Global Positioing System,  定位系统)是美国研制的第二代卫星导航系统。GPS系统由空间部分、地面控制部分和用户设备组成。空间部分主要由21颗工作卫星和3颗备用卫星组成。在地球的任意处(有360°的视野)至少可以看到3颗卫星(根据笔者实际用的情况看)。地面控制部分包括监测站、主控站和注入站。用户设备就是GPS接收机,本系统所选择的接收机是GPS-OEM板(型号是GPS15L,在2.3小节会详细讨论),它根据自己时钟和接收到的导航电文计算出接收机(天线)所在的位置和GPS时间。

  授时原理

  目前的定时型GPS接收机,在其内部时钟与GPS时间同步后,将给出与UCT时间同步的1 pps(秒脉冲)信号及其对应的时间代码,如图2所示。

  同步采样控制单元硬件

  在设计该模块时,选择Garmin 公司研制开发的GPS15L OEM板和单片机AT89C51分别作为GPS接收机和控制器。该模块体现了整个系统要用到的GPS授时技术,工作原理如下:系统上电复位后,单片机通过串口TXD实现对GPS15L板初始化,设置GPS接收机传送的数据格式。初始化完毕后,GPS15L板会给出相应信息,单片机识别到这些信息后,开始接收GPS15L板传送来的时间数据,并对它进行处理,将其转换成北京时间输出。如图3所示,单片机AT89C51的串行口RXD、TXD分别和 GPS15L板的TXD1、RXD1连接起通信作用。由于TXD既要在上电时给GPS15L板发出初始化命令,又要在初始化完毕后传送北京时间,因此为了不使两阶段的工作相互影响,用P1.0口线和若干逻辑门来控制通信的先后顺序。GPS15L板初始化后,还会输出秒脉冲信号。1pps信号有一路作为单片机的外部中断源,以实现时间信息的同步处理,另外也用来监测信号是否正常。还有一路信号可由单片机P1.1口进行控制,根据监测的结果决定是否需要将其传送给下  控制器。

  另外,本电路选用的高稳晶振是OCXO型号的稳补晶体振荡器,其工作频率为1 MHz,频差不大于10-7。它输出的振荡信号经过整形、电平转换变为适合TTL电路的电平,经计数器分频后得到满足采样率要求的时钟信号(采样率可调)。该时钟信号每隔1 s被1 pps信号的上升沿同步1次,使之运行在GPS时间基准上。由于1 MHz晶振的稳定度很高,1 s内漂移不超过1μs,因此得到的同步采样脉冲  很高。

  与DSP的接口部分

  芯片采用美国德州仪器(Texas Instruments)公司研制的数字信号处理器TMS320F2812。它是一个32位定点运算、集成度高、性价比高的DSP芯片。

  数据采集系统选用ADS8361作为片外ADC模块,虽然TMS320F2812有16通道的12位ADC,但是为了进一步提高系统的A/D转换  ,增加了片外外设ADS8361。ADS8361是2+2通道,16位的A/D转换器;它同ADS7861(12位)完全兼容,可以与F2812数字信号处理器直接接口使用。它是由四通道差分输入分成两组分别连接到独立的转换器上的,可以完成双信号的同时采集,  转换速率可以达到500 kHz。它工作在50 kHz频率时具有极强的抗干扰能力,特别适合数据采集的高采样率要求的场合。此外,ADS8361还提供高速双串行接口,可以有效地减少软件开销,并且功耗非常低,只有150 mW。

  与TMS320F2812接口电路设计

  处理器提供多通道缓冲串口(McBSP)和串行外设接口(SPI),两种串口都可以与ADS8361接口。根据设计的需要,本系统采用的是McBSP的接口扩展方式。在ADS8361与TMS320F2812的接口硬件设计时,为避免数据信号产生振铃,特意考虑在DSP与 ADS8361之间增加吸收电阻。由于TMS320F2812只有一个McBSP接口,因此必须将ADS8361设置在模式2和模式4。 TMS320F2812与ADS8361的硬件接口电路如图4所示,ADS8361的CLOCK、(RD+CONVST)和SDA引脚分别连接到 McBSP的CLKX、(FSX+FSR)和DR引脚。由于McBSP上只连接一个A/D转换芯片,片选信号(CS)直接接地,如果需要扩展多个A/D转换芯片,则可以采用GPIO控制片选信号;同时使用通用I/O控制ADS8361的工作模式,使M0=0,M1=1;DX控制ADS8361的通道选择。

  模拟输入信号调理电路的设计

  电力系统的相电流和相电压分别经过CT和PT变换后,输出为标准±10 V的模拟电压信号。此模拟电压信号需要经过前端的低通滤波器,滤除不必要的高频噪声信号,以及将模拟输入信号范围由±10 V变换成后端A/D所能接受的信号范围。每一路的模拟调理电路如图5所示。

  接口通信电路部分

  通信电路采用USB接口,USB接口芯片选用Cypress公司的CY7C68001。CY7C68001与TMS320F2812的连接电路如图6所示。

  作为TMS320F2812的外设,采用异步存储器接口与TMS320F2812相连接,上位PC机可以唤醒CY7C68001,也可以配置USB芯片。USBCS是CY7C68001的片选信号线,在USBCS为低电平时,CY7C68001采用异步读写方式完成二者之间的数据和命令的交换。

  有两种对外接口,分别是FIFO数据接口和命令口。数据采集系统将这两种对外接口配置在地址范围是0x004000~0x004004 的空间,分配如表2所列。TMS320F2812通过CY7C68001的FIFO数据接口可以访问4个1 KB的FIFO中的数据,而FIFO数据接口的选择是通过控制地址线A[2:0]来实现的。当TMS320F2812的地址线A[2:0]为100B时,选中CY7C68001的命令口,然后通过命令口可以访问37个寄存器、Endpoint0缓冲器(64字节FIFO)和描述表(500字节FIFO)等。如果将Endpoint0缓冲器和描述表也看成寄存器,那么单个命令口内含了众多的寄存器,对这些寄存器进行读/写访问采用二次寻址方式,即首先通过命令口将要寻址的寄存器子地址和操作类型(读操作或写操作)写入,然后再通过命令口将数据读出或写入相应的寄存器。

  还有一个中断信号USBINT和4个状态信号(USBREADY、FLAGA、FLAGB、和FLAGC)。中断信号USBINT占用 TMS320F2812的外部中断XINT1,状态信号USBREADY、FLAGA、FLAGB和FLAGC配置在另一个扩展的寄存器中, TMS320F2812可对其进行查询,从而得到USB的状态。USB芯片的WAKEUP也配置在另一个扩展的寄存器中,TMS320F2812通过对这个寄存器的写操作达到唤醒USB的目的。

  系统的软件部分

  系统的软件部分包括主程序和各中断程序以及系统与上位PC机的USB通信程序。主程序完成各变量及串行口的初始化,并利用傅里叶变换算法计算出各采样点的实部和虚部。中断程序包括A/D转换程序、GPS时间信息的读取程序等。本文重点介绍用于读取GPS接收器串口输出的中断响应程序的设计思路,程序流程如图7所示。

  电源设计

  电源电路采用降额设计,并采用高  电源电路,可保证供电系统的可靠性。

  ① ADS8361的内部参考电源为+2.5 V。

  ② GPS15L OEM板的供电电压为3.3~5.4 V,GPS接收天线的供电电压为3.0 V。

  ③ TMS320F2812要求双电源(1.9 V和3.3 V)为CPU、Flash、ROM、ADC和I/O接口供电。

  当上电时,为了保证芯片内各个模块的正确复位,TMS320F2812供电需要满足一定的时序。该系统先给所有+3.3 V的电源引脚(VDDIO、VDD3VFL、VDDA1、VDDA2、VDDREF)上电,再接通1.9 V(VDD、VDD1)的芯片内核电源;当VDDIO的电压上升到2.5 V时,VDD才上升到0.3 V,这样才能保证片内各个模块上电时能正确复位。掉电时,在VDD下降到1.5 V之前,系统复位。这样才能保证在VDD、VDDIO掉电之前片内Flash模块正确复位。该系统设计中,选用TI公司提供的双电源输出、Low- Dropout型电源TPS76801QDR来给TMS320F2812供电,实现上述的供电时序。

  结 语

  本数据采集系统为四通道,A/D转换  为16位,转换  高并且抗干扰能力极强,通过USB能够实时海量传输所采集到的数据。另外  重要的是,用GPS 授时模式代替传统授时模式,特别适合需要异地同步采集的场合。例如:在高速电气化铁道电气参数参量中,为了能够同步获得列车电流、位置以及钢轨电位、钢轨电流、吸上线电流,只需要在列车上和钢轨地面两个测量点同时使用同样的数据采集系统,这样测得的相量数据就有统一的时间基准,便于科学地分析这些参数。

  • 分享到:

 

猜你喜欢

  • 主 题:LTM4702:16VIN、8A 超低噪声 Silent Switcher 3 μModule
  • 时 间:2024.04.11
  • 公 司:ADI&Arrow

  • 主 题:高集成伺服驱动系统与工业机器人方案
  • 时 间:2024.04.18
  • 公 司:ST

  • 主 题:英飞凌XMC4000支持EtherCAT®通讯的伺服/IO控制方案介绍
  • 时 间:2024.04.25
  • 公 司:英飞凌&骏龙科技