“将更多的软件控制和认知能力集成到军用无线电中,需要频率和带宽更灵活的射频(RF)设计。为了实现这一目标,需要移除静态滤波器,并用可调谐滤波器代替。同样,通用平台的概念将允许更短的开发时间,降低制造成本,并提供系统之间的更大互操作性。通用平台要求RF系统能够为传统上具有非常不同架构的应用提供全部性能。未来的无线电平台正在将尺寸和功率需求推向一个新的极端。
”作者:DAVID BROWN,WYATT TAYLOR
将更多的软件控制和认知能力集成到军用无线电中,需要频率和带宽更灵活的射频(RF)设计。为了实现这一目标,需要移除静态滤波器,并用可调谐滤波器代替。同样,通用平台的概念将允许更短的开发时间,降低制造成本,并提供系统之间的更大互操作性。通用平台要求RF系统能够为传统上具有非常不同架构的应用提供全部性能。未来的无线电平台正在将尺寸和功率需求推向一个新的极端。
自问世以来,超外差架构一直是国防和航空航天系统无线电设计的支柱。无论是手持式士兵无线电、无人机(UAV)数据链路,还是信号情报(SIGINT)接收器,单级或双混频超外差架构都是常见的选择。这种设计的好处是显而易见的:适当的频率规划可以实现非常低的杂散发射,通道带宽和选择性由中频(IF)滤波器设置,并且两级之间的增益分布允许在优化噪声系数和线性度之间进行权衡图 1。
图1:基本超外差架构
在近一百多年的使用中,超HET架构在整个信号链中实现了性能的显著提高。微波和射频器件提高了性能,同时降低了功耗。模数转换器 (ADC) 和数模转换器 (DAC) 提高了采样速率、线性度和有效位数 (ENoB)。更多性能提升:现场可编程门阵列 (FPGA) 和数字信号处理器 (DSP) 的处理能力遵循摩尔定律,并随着时间的推移而提高,从而实现更高效的算法、数字校正和进一步集成。此外,封装技术的进步缩小了器件引脚密度,同时改善了热处理。
然而,这些特定于设备的改进开始达到收益递减的地步。虽然RF元件遵循减小尺寸、重量和功耗(SWaP)的趋势,但高性能滤波器仍然很大,并且通常是定制设计,从而增加了整体系统成本。此外,中频(IF)滤波器设置了平台的模拟通道带宽,因此很难创建可在各种系统中重复使用的通用平台设计。对于封装技术,大多数生产线不会低于 0.65 或 0.8 mm 的球间距,这意味着具有许多输入和输出 (I/O) 要求的复杂设备的物理尺寸存在限制。
零中频架构
近年来重新成为潜在解决方案的超HET架构的替代方案是零中频(ZIF)架构(图2)。ZIF 接收器使用单混频级,将本振 (LO) 直接设置为目标频段,将接收信号向下转换为基带同相 (I) 和正交 (Q) 信号。这种架构减轻了超HET的严格滤波要求,因为所有模拟滤波都发生在基带,与定制RF/IF滤波器相比,基带滤波器更容易设计且成本更低。ADC和DAC现在在基带上工作I/Q数据,因此可以降低相对于转换带宽的采样速率,从而节省大量功耗。从许多设计方面来看,ZIF收发器由于降低了模拟前端复杂性和元件数量,从而显著降低了SWaP。
图2:零中频架构。
但是,这种系统架构存在一些需要解决的缺点。直接变频至基带会引入载波泄漏和镜像频率分量。在数学上,I 和 Q 信号的虚部由于它们的正交性而被抵消(图 3)。由于工艺变化和信号链中的温度增量等实际因素,无法在I和Q信号之间保持完美的90度相位偏移,从而导致镜像抑制性能下降。此外,混频级中不完美的LO隔离会引入载流子泄漏成分。如果不加以校正,图像和载波泄漏会降低接收器的灵敏度并产生不希望的光谱发射。
图3:零中频图像消除。
从历史上看,I/Q不平衡限制了适合ZIF架构的应用范围。这是由于两个原因:首先,ZIF架构的分立实现将在单片器件和印刷电路板(PCB)中出现不匹配。此外,单片设备可以从不同的制造批次中提取,由于本机工艺变化,精确匹配非常困难。分立实现还将使处理器与RF组件物理分离,使得正交校正算法很难跨频率、温度和带宽实现。
集成收发器提供SWaP解决方案
将ZIF架构集成到单片收发器器件中,为下一代系统提供了前进的道路。通过将模拟和RF信号链放在一块硅片上,工艺变化将保持在最低限度。此外,DSP模块可以集成到收发器中,从而消除了正交校准算法和信号链之间的界限。这种方法既提供了无与伦比的SWaP改进,又可以匹配超HET架构的性能规格。
ADI公司提供两款面向国防和航空航天市场的收发器:AD9361和AD9371(图4)。这些器件将RF、模拟和数字信号链集成到单个CMOS器件上,并包括数字处理功能,可在所有过程、频率和温度变化范围内实时运行正交和载波泄漏校正。AD9361专注于中等性能规格和超低功耗,如无人机数据链路、手持式和单身通信系统以及小尺寸SIGINT。AD9371针对极高性能规格和中等功耗进行了优化,集成了一个用于精细校准控制的ARM微处理器,以及一个用于功率放大器(PA)线性化的观察接收器和一个用于空白检测的嗅探器接收器。这些特性意味着使用宽带波形或占用非连续频谱的通信平台现在可以以更小的外形尺寸实现。高动态范围和宽带宽使SIGINT、EW和相控阵雷达能够在RF频谱高度拥塞的位置运行。
图4:AD9361和AD9371原理框图
下一代就是现在
一百年来的设备优化使 super-het 能够在不断更小、更低功耗的平台上实现越来越高的性能。随着物理限制成为现实,这些改进开始放缓。下一代航空航天和国防平台将需要一种新的射频设计方法,将现有平台的几平方英寸集成到单个设备中。在这些器件中,软件和硬件之间的界限变得模糊,从而实现了更大的优化和集成,SWaP的降低不再意味着性能的降低。
分享到:
猜你喜欢