“电感功耗包括线圈损耗和磁芯损耗两个基本因素,线圈损耗归结于线圈的直流电阻(DCR),磁芯损耗归结于电感的磁特性。
”电感功耗阻性损耗
电感功耗包括线圈损耗和磁芯损耗两个基本因素,线圈损耗归结于线圈的直流电阻(DCR),磁芯损耗归结于电感的磁特性。
DCR 定义为以下电阻公式:
式中,ρ 为线圈材料的电阻系数,l 为线圈长度,A 为线圈横截面积。
DCR 将随着线圈长度的增大而增大,随着线圈横截面积的增大而减小。可以利用该原则判断标准电感,确定所要求的不同电感值和尺寸。对一个固定的电感值,电感尺寸较小时,为了保持相同匝数必须减小线圈的横截面积,因此导致DCR 增大;对于给定的电感尺寸,小电感值通常对应于小的DCR,因为较少的线圈数减少了线圈长度,可以使用线径较粗的导线。
已知DCR 和平均电感电流(具体取决于SMPS 拓扑),电感的电阻损耗(PL(DCR))可以用下式估算:
PL(DCR) = IL(AVG)^2× DCR
这里,IL(AVG)是流过电感的平均直流电流。对于降压转换器,平均电感电流是直流输出电流。尽管DCR的大小直接影响电感电阻的功耗,该功耗与电感电流的平方成正比,因此,减小DCR 是必要的。
另外,还需要注意的是:利用电感的平均电流计算PL(DCR) (如上述公式)时,得到的结果略低于实际损耗,因为实际电感电流为三角波。本文前面介绍的MOSFET 传导损耗计算中,利用对电感电流的波形进行积分可以获得更准确的结果。更准确。当然也更复杂的计算公式如下:
PL(DCR) = (IP^3 - IV^3)/3 × DCR
式中IP 和IV 为电感电流波形的峰值和谷值。
磁芯损耗
磁芯损耗并不像传导损耗那样容易估算,很难估测。它由磁滞、涡流损耗组成,直接影响铁芯的交变磁通。SMPS 中,尽管平均直流电流流过电感,由于通过电感的开关电压的变化产生的纹波电流导致磁芯周期性的磁通变化。
磁芯材料对磁芯损耗的影响很大。SMPS 电源中普遍使用的电感是铁粉磁芯,铁镍钼磁粉芯(MPP)的损耗最低,铁粉芯成本最低,但磁芯损耗较大。
磁芯损耗可以通过计算磁芯磁通密度(B)的最大变化量估算,然后查看电感或铁芯制造商提供的磁通密度和磁芯损耗(和频率)图表。峰值磁通密度可以通过几种方式计算,公式可以在电感数据资料中的磁芯损耗曲线中找到。
相应地,如果磁芯面积和线圈数已知,可利用下式估计峰值磁通:
这里,B 是峰值磁通密度(高斯),L 是线圈电感(亨),ΔI 是电感纹波电流峰峰值(安培),A 是磁芯横截面积(cm2),N 是线圈匝数。
磁芯损耗主要由三种构成,磁滞损耗、涡流损耗和剩余损耗。
磁滞损耗如何理解呢?
磁滞损耗源于每个交流周期中磁芯偶极子的重新排列所消耗的功率,可以将其看作磁场极性变化时偶极子相互摩擦产生的“摩擦”损耗,正比于频率和磁通密度。
磁芯在外磁场的作用下,材料中的一部分与外磁场方向相差不大的磁畴发生了‘弹性’转动,这就是说当外磁场去掉时,磁畴仍能恢复原来的方向;而另一部分磁畴要克服磁畴壁的摩擦发生刚性转动,即当外磁场去除时,磁畴仍保持磁化方向。因此磁化时,送到磁场的能量包含两部分:前者转为势能,即去掉外磁化电流时,磁场能量可以返回电路;而后者变为克服摩擦使磁芯发热消耗掉,这就是磁滞损耗。
上图为典型的磁滞曲线,从前面磁滞损耗的理解来看。剩磁Br越小,那么磁畴的刚性转动越少,损耗就越小。或者说磁滞损耗正比于磁滞回线包围的面积。
涡流损耗则是磁芯中的时变磁通量引入的。由法拉第定律可知:交变磁通产生交变电压。因此,这个交变电压会产生局部电流,在磁芯电阻上产生I2R 损耗。
如下图,根据电磁感应定律,通电线圈产生磁场B,如果电流是交变的,那么产生的磁场B也是变化的。变化的磁场在磁芯上面产生电场e,并且这个电场是环形电场。因为磁芯材料的电阻率一般不是无限大的,会有一定的电阻值,那么感生出的环形电场会使磁芯中形成环形电流。电流流过电阻,就会发热,产生损耗,这就是涡流损耗。
剩余损耗
剩余损耗的来源,是因为磁芯在磁化过程中,磁化状态并不是随磁化强度的变化立即变化到它的最终状态,而是需要一个过程,需要一定的时间,这便是引起剩余损耗的原因。
剩余损耗是由于磁化弛豫效应或磁性滞后效应引起的损耗。所谓弛豫是指在磁化或反磁化的过程中,磁化状态并不是随磁化强度的变化而立即变化到它的最终状态,而是需要一个过程,这个‘时间效应’便是引起剩余损耗的原因。它主要是在高频1MHz以上一些驰豫损耗和旋磁共振等,在开关电源几百KHz的电力电子场合剩余损耗比例非常低,可以近似忽略。
选择合适的磁芯,要考虑不同的B-H曲线和频率特性,因为B-H曲线决定了电感的高频损耗,饱和曲线及电感量。因为涡流一方面引起电阻损耗,导致磁材料发热,并引起激磁电流加大,另一方面减少磁芯有效导磁面积。所以尽量选择电阻率高的磁性材料或采用碾轧成带料的形式以减少涡流损耗。因此,铂科新材料NPH-L适用于更高频率、高功率器件的低损耗金属粉芯。如图所示:
磁芯损耗是磁芯材料内交替磁场引致的结果。某一种材料所产生的损耗,是操作频率与总磁通摆幅(ΔB)的函数,从而降低了有效传导损耗。磁芯损耗是由磁芯材料的磁滞、涡流和剩余损耗引起的。所以,磁芯损耗是磁滞损耗、涡流损耗和剩磁损耗的总和。公式如下:
在一个世纪以前Steinmetz 总结出一个实用于工程计算磁芯损耗的经验公式:
这个公式表明单位体积的损耗Pv 是重复磁化频率和磁通密度的指数函数。Cm ,α 和β 是经验参数,两个指数都可以不为整数,一般的1
有些厂家给出的计算公式,主要计算磁滞损耗,剩余损耗和涡流损耗都忽略了。如上图所示:
根据磁芯厂家提供的计算公式计算磁损。
借助 Steinmetz 模型计算磁损在工程上的应用十分广泛,然而该模型的参数随频率变化,也就是说用来反映频率和最大磁感应强度与磁损关系的幂指数α 和β 的拟合值在不同频率时是不同的,同时温度对磁芯损耗的影响也很大。
飞利浦公司的3F3 材料单位体积损耗和温度的关系。既然磁芯损耗随温度的变化而变化,那么计算公式就应该考虑温度的影响。但式(2)中没有明显体现温度影响的参数。为此,一些产商在Steinmetz 经验公式的基础上进行改进,把温度和频率的影响包括在一个更加通用的公式中,比如下式就是飞利浦公司提出的计算正弦波下的单位体积的磁芯损耗公式(W/m3)。
其中:
式(3)中参数Cm、α、β 反映了频率对磁芯损耗的影响。而参数ct0、ct1、ct2,和T 体现了温度的影响,温度的总体影响用参数CT 来表示。表1 为飞利浦公司提供的材料的相应参数。应用式(3)和(4) ,Steinmetz 经验公式(2)可以用来计算正弦波励磁时,不同频率和温度下磁芯材料的单位体积损耗。
表1 飞利浦公司常用磁材料的单位体积损耗(W/m^3)的参数列表
电感磁芯产生损耗的原因:贴片电感磁芯的损耗主要来源于磁芯损耗和线圈损耗两个方面,而且这两个方面的损耗量的大小又需要根据其不同电路模式来进行判断。其中,磁芯损耗主要是因为磁芯材料内交替磁场而产生的,它所产生的损耗是操作频率与总磁通摆幅(ΔB)的函数,会大大降低了有效传导损耗。线圈损耗则是因为磁性能量变化所造成的能源耗损,它会在当功率电感电流下降时,降低磁场的强度。
电感磁芯降低损耗的方法:
1、电感磁芯中产生的磁芯损耗会随电感磁芯损耗上升而下降的容许铜线损耗,而且还会带来相同的电感磁芯材料通量激增。因此当开关频率上升至 500 kHz 以上,电感磁芯损耗和绕组交流损耗就可以极大地减少电感中的容许直流电流。
2、电感磁芯在线圈中的损耗主要表现在铜线损耗上,因此想要降低铜线损耗,必须要在电感磁芯损耗上升时降低,一直持续到各损耗均相等。最好的情况就是在高频率下损耗稳定保持相等,并允许从磁结构获得最大输出电流。
分享到:
猜你喜欢