中国电子技术网

设为首页 网站地图 加入收藏

 
 

[原创]超低功耗应用中的隔离

关键词:光耦合器 RS-232 RS-485 DeviceNet ADI

时间:2015-01-13 16:19:46      来源:网络

光耦合器诞生于大约45年前,大约在同一时期亦诞生了很多标准通信协议,比如RS-232、RS-485、DeviceNet,以及4-20mA电流环路。光耦合器的出现,即首款封装隔离器,这些通信方案的发展是相辅相成、互相促进的。它们互相吸取了对方的优势。

光耦合器诞生于大约45年前,大约在同一时期亦诞生了很多标准通信协议,比如RS-232、RS-485、DeviceNet,以及4-20mA电流环路。光耦合器的出现,即首款封装隔离器,这些通信方案的发展是相辅相成、互相促进的。它们互相吸取了对方的优势。自此以后,多年的创新工程与不懈的努力改进,使得光耦合器得以在大量应用中大显身手。然而,新的隔离技术在过去十年中逐渐崭露头角。为了满足最新应用的要求,新技术相比以前的光耦合器技术具备很大的优势。新隔离器可用在速度更高、功耗更低的应用中应用。

新应用领域

目前,数字隔离器能以高出以前光耦合器5倍或6倍的速度工作。 最终,ADI的产品可能能够以高几个数量级的数据速率工作。以下应用对功耗有所要求:4-20mA现场仪器仪表、电信和电池供电设备。这些应用同样推动隔离接口的功耗向降低几个数量级的方向发展。

当前技术

决定隔离器电气性能的因素有哪些?可以将一个隔离器拆分成四个独立的部分。

首先是一个数据编码方案。它可以是一个电平编码;该方案在某个主动状态期间产生一些场,这个场将在主动状态期间不断推动光或RF信号传输,然后只需在被动状态期间将其关断,便能以这种方式得到一个1和0编码信号。另一种方法是采用脉冲编码。脉冲编码利用极短脉冲的极性或脉冲序列,将信息从隔离栅的一侧传输到另一侧。

下一步是发送数据。这里重要的是建立信号的效率。当采用光学系统时,光就是信号,因此是用LED来建立信号。LED的效率决定了信号的效率。效率取决于磁场(感性耦合)或电场(容性耦合)。对于感性耦合而言,必须产生高电流,才能建立良好的磁场。而采用电场时,只需对小电容的平板充电即可。磁场感性耦合的发送端功耗略高,而接收端的功耗略低。电场倾向于在发送端具有较低的功耗而在接收端具有较高的功耗,这是因为它们需要极为密切地监控信号电平,从而具有较高的放大倍数。

 

图1 数字隔离器采用开关键控制
 图2 数字隔离器采用脉冲编码方案

因此,对于光耦合器来说,就有一个接收器效率问题。光电晶体管或PIN二极管被动接收光,并允许电流流动。芯片级电感的功耗极低。它只是从原边接收能量。可将其直接输入下一个分析级,无需过多放大。利用电场的容性耦合需要放大和信号处理,因此功耗可能更高。然后,最终步骤是数据解码开销,那就是放大器偏置;或者当采用脉冲编码时,不会有什么功耗代价。但它会以时间为代价,因为可能需要对脉冲进行帧处理,以及诸如此类的问题。

编码方案,首先是开关键控,其本质上是电平敏感型编码方案,其耦合场在整个主动状态期间存在,而在被动状态期间缺失。该方案可采用光学部署,也可采用光耦合器、容性或感性耦合器、脉冲编码中的RF方式部署。在这些情况下,场存在于极短脉冲或脉冲序列中,然后在副边接收并解码数据,并锁存到触发器,并保留直到接收新边沿。基本上,它对边沿(而非电平)进行编码,然后从原边发送到副边,并锁存入触发器。可以通过容性和感性方案实现该操作,而采用光学方案并不现实。

耦合场同样是光,编码方案始终采用开关键控。它们的工作方式如下:原边LED发出光,然后某种介质(比如半透明环氧树脂或其他材料)用作绝缘,然后在接收器这边,可以针对极低端光耦合器使用光电晶体管,也可针对较高端光耦合器使用PIN二极管。

促使实现光耦合器功能的是电流传输比,这在极低光电晶体管类光耦合器中有,但在较高速器件中是看不到的。几乎所有的光耦合器属性都能归结于这个电流传输比。它本质上是一种权衡取舍。如需更高速度,就会花费更多功耗以便让信号跨越隔离栅传输,并尽可能快速地对接收器充电,如需极低功耗,可极为缓慢地执行操作,降低功耗。

改进光耦合器的方法是采用效率更高的LED,这对原边和副边来说都有好处。可加厚光电晶体管的基极,从而提高接收器电容并使其速度变慢;因此可通过这种方式获得极低功耗,但速度也极低。可以使用PIN二极管,它们非常快、电容很低,但同样接收光的能力非常差,且若要获得较好的吞吐速率则需在LED上耗费大量功耗,要么PIN二极管的输出需要放大很多倍。光耦合器使用开关键控,因为它们无法以足够高的速度开关或创建足够短的脉冲,来实现脉冲编码。

另一方面,数字隔离器可以使用开关键控,如图1所示。实现方法是:开关RF振荡器,对输入信号进行高电平和低电平编码,然后通过一对差分电容对其进行耦合。它将输入差分接收器,且存在振荡时驱动输出至高电平,而不存在时驱动至低电平,这样可以得到非常好的传播延迟性能。

差分接收器具有良好的噪声免疫性能,同时高频下的功耗性能相当出色。然而,它们低频下的功耗非常高,基本上,存在一个下限,不可再低于此下限值,因为接收器必须始终偏置,以便随时根据发送器的开关状态而以极快的速度开关,它们有很多优良的特性,但用来降低功耗则不太合适。

另一方面,数字隔离器采用脉冲编码,且通常可以使用感性或容性耦合,如图2所示,采用感性耦合。基本上,随着输入改变边沿,即如果得到一个上升沿,就将其编码为双脉冲,它将把下降沿编码为单脉冲,还能使用脉冲极性,但本例中采用脉冲序列。然后那些脉冲将被编码为鲁棒性较高的电流脉冲,宽度约为1ns,高度可能为70mA。 那些脉冲通过线圈发送。实际上,它依然是极低功耗编码,因为虽然信号高度为70mA,但它仅有1ns宽,因此该编码方案的平均功耗极低。这些脉冲通过电感发送,它们在副边接收并进行窗口化处理,然后锁存入输出端,以便重建输入脉冲串。这类方案的特点是低数据速率时的功耗极低,因为功耗主要与脉冲高度有关,即曲线下方的脉冲区域。它具有高共模抗扰度、低传播延迟以及高数据速率,与其他方案类似。若在接收器端采用单端施密特触发器,则可实现极低静态电流。

 

图3 纠错/故障安全电路

一脉冲二脉冲编码方案的特性:

•低数据速率下具有极低的功耗

•高共模抑制能力

•低传播延迟

•高数据速率

•单端施密特触发式接收器支持低静态电流

如果由于上电或某种电源瞬变事件导致失配,从而改变输出锁存状态,则输入和输出的状态可能有所不同,并且将保持这种状态,直到新数据将其改变。对于边沿编码方案,通常添加一个刷新电路,对输入直流电平进行采样,并将其周期性发送到输出端,以纠正输入和输出之间的任何直流失配,如图3所示。通常以大约1μs的间隔执行此操作。此外,输入端还有一个毛刺滤波器,防止极短的脉冲,短到系统无法响应的脉冲,进入前端从而使线圈传输不可预知的数据。

在接收端,可针对脉冲部署看门狗等器件,如果脉冲串消失,换言之,如果在最小数据速率下都没有接收数据,那么接收器电路就知道输入端没有在发送数据,于是会将输出端置于默认状态下,所有这一切同样会产生开销。它所做的就是形成一个脉冲编码下限,从而哪怕脉冲编码方案也能看到最低量的电流。

 

图4 三种技术比较

 

图5 该新系列隔离器的功耗曲线比较

如图4所示,比较这三种技术,可以发现光耦合器(最上面的红色曲线)在数据范围的中间部分下降,因此这是一个典型的单晶体管光耦合器。整个数据速率范围内的功耗其实非常高,并且随着数据速率的上升而升高的非常快。其他类型的光耦合器可以降低此功耗,但同时也会将可用的数据速率降低至极低的水平,此处所举的例子在两者之间取得平衡。另外还有高数据速率的光耦合器,它们的功耗曲线倾向于沿图4的最上方变化。

下一条曲线表示开关键控数字隔离器,如图4所示,它十分平坦,且工作时最小功耗远低于光耦合器,但依然处于一个较高的水平。第三条曲线(绿色)表示的是脉冲编码数字隔离器,可以看到在低频时它的功耗很平坦,因为器件内部依然每μs都会发送数据,因此它基本上工作在稳定的速率下,直到输入数据的速度超过刷新速度,随后它就不再是线性的了,可以发现动态电流。

那么该如何选择呢?为了实现新的应用类型,功耗水平必须远低于这三种选项,虽然我们向这一目标有所接近,但仍然处于同一等级。理想的低功耗隔离器应当是平坦的,或者是不断下降直到零的。它将具有超低功耗,低于当前器件两到三个数量级。它将保留隔离器的全部良好特性,即噪声抗扰度、共模瞬变抗扰度,以及正常工作所需的全部隔离。

应当选择何种技术?在提到的这些技术中,脉冲编码方案具有低至1Mb频率范围的最佳性能。开关键控往往需要大量功耗来保持主动状态,因此实际传输数据时,它将消耗大量功耗,并且对此将无能为力。光传输速度过慢,无法进行脉冲编码,不予采用,光学方案无法用于降低功耗。

 

图6 4-20mA应用电路

如果重新设计毛刺滤波器并尽可能消除电路中的所有偏置,那么脉冲编码就有可能大幅提升性能。放宽热补偿要求,一般而言,不要进行极为紧凑的热补偿设计,可以降低功耗。此外,如果降低刷新频率,便能让拐点位置下移,使功耗变得平坦。最后,如果允许完全关闭刷新,那么事实上随着频率的下降,可让器件的功耗变得越来越低。

ADI公司推出了新的数字隔离器产品系列:ADuM144x和124x,可满足上述全部要求。提供多方向通道配置的2/4通道产品,基本上涵盖每种通道数量的全部通道配置。它们采用低功耗设计,工作电压范围为2.25V~3.6V,工作温度高达125℃,且在工作温度范围内性能不会下降。这些产品的数据速率高达2Mbps,并具有ADI多年来早已实现的CMTI性能以及更小的封装尺寸,其数字隔离特性一如ADI过去销售的十亿通道的隔离产品。

综合这些产品的性能,再次对比它们的技术。如图5所示,如果加入该新系列隔离器的功耗曲线,那么可以看到,在动态电流占主导的地方,这些新的隔离器由于降低了所有内部偏置,因此得以降低每通道大约0.2mA的功耗。然后,通过将刷新速率降低至大约17kbps,每通道范围内的动态电流便可扩展至最低5μA。低于17kbps处,这些器件每通道功耗仅5μA。因此,这些产品相比目前市场上较佳的隔离器,其功耗下降了两个数量级。

然而,也可以禁用刷新电路,该电路仅在校正误差或启动时才起作用。可以在不提供刷新的情况下想办法完成任务,这样可让动态电流一路下降至大约100Hz范围内,从而得到低于4kHz、每通道功耗远低于1μA的性能。这要比前面提到过的还要低三个数量级。

应用示例

这个突破性的产品,它的功耗低三个数量级,能用它来做什么呢?什么类型的应用需要超低功耗?4-20mA电流环路、环路供电型传感器,其实就是隔离式通信,比如RS232等需要在电缆远端实现隔离的应用。如果应用的功耗在此范围内,那么可以在电流的数字逻辑电平上实现整个接口,或者如电池供电型应用那样具有固定量的电能,并运行一段特定的时间。没有人希望隔离接口不工作时也始终消耗电能,进而耗尽电池。

另外一些超低功耗有用的地方有:获取电能的成本较高,无论是元件或是散热方面。散热意味着必须引入冷却机制,对于少量功耗来说,添加其他元件,比如开关调节器或DC-DC转换器,是一种代价高昂的解决方案。超低功耗接口可让您减少现有高压总线上的功耗,而几乎没有任何功耗代价。

隔离式环路智能传感器前端供电型4-20mA应用,电路图如图6所示。

通常,需读取左侧输入ADC的传感器或输出电压信号,这部分的功耗可以做到非常低。在图6右侧,有一个24电流环路,环路上的一切都有4mA功耗预算,环路上始终存在4mA,因此该功耗可用来运行电子器件。通常,环路控制器(图中显示的是DAC接入环路中)允许从环路获取3V~9V电压以供使用。它需要少量电源才能运行自己的DAC,调制环路电流。

在现代应用中,数字DAC与SPI接口一同使用。通常,这种组合需要四个通道,才能将信号回传至DAC。因此,可以使用3V~9V构成一个成本极低的隔离式电源。通常可在输入端使用高压,并将其逐步调低,这样会增加器件左侧或隔离栅左侧的可用电流,能以非常高的效率获得跨越隔离栅的中等量的电源。 问题在于隔离,就当前的技术而言,哪怕只是采用降压变压器后可跨越隔离栅获得的电源量,通常隔离栅也会消耗接口提供的几乎所有电源。

应用的关键在于把环路中的电能分配给隔离式传感器。如果采用降压DC-DC,并向传感器提供最优电源,那么一个简单的设计就能提供70%的效率,基本上就是在副边采用振荡器、变压器和LDO而已。假设有一个2:1降压调节器,效率为70%,输入电压为6V,那么输入DC-DC的电流为2mA。隔离侧的最大功耗大约为2.5V和2.8mA。 如果假定SPI工作在大约100kbps,这在4-20mA电流环路中是非常普遍的信号保真度。那么基本上,此SPI数据速率会限制所需电源。那么,SPI的隔离接口则消耗其余所有电源。如果可提供更多电源,设计人员就会希望提高SPI的工作频率,以获得更佳的保真度,或者为数字控制添加HART调制解调器功能。HART是一种数字系统,工作在4-20mA电流环路的最顶端,允许低频数字命令随4-20mA模拟信号一同送出。

如果需要搭建一个包含HART应用的系统,就需要探讨光耦合器,光耦合器的部分特性是晶体管类型以及高速器件类型,使用开关键控的容性数字隔离器、使用脉冲编码的感性数字隔离器,然后是ADI公司提供的新超低功耗器件。

使用光耦合器的SPI接口需要28mA电流,以便工作在100kbps。 该电源是没有办法提供的。事实上,无论是数字还是光耦合器,功耗都远远超过10mA。 容性开关键控器件接近这个数字。有4mA可以用来运行SPI总线和HART串行接口,但它依然是一侧所需的全部功耗预算的1.5倍,因此将不得不耗尽一切,近乎两倍之多。

如果考察采用脉冲编码的数字隔离器,那么将正好处于边沿上,这些系统是可以实现的,但它们的裕量极少。如果考察100kbps时的超低功耗,则隔离接口仅需0.01mA。换言之,它现在是整个功耗预算中微不足道的一部分了,这意味着现在设计人员可以让ADC工作在高得多的数据速率下,改善4-20mA电流环路的保真度,而之前却几乎无法在所需的数据速率下让数据通过。

电池的电能有限,电池会耗尽,然后就必须充电或替换。处理这类系统中的隔离通常涉及到电源管理。很多情况下,这类系统的控制器有时候将不得不完全关闭隔离接口,这是非常棘手的,因为很难知道何时再次开启。它们还经常会发出脉冲,只是为了检查是否接入了任何器件,这将消耗大量电能。另一个策略是在开关键控等隔离器未工作时使其处于相应状态,避免消耗过多电能。通常只需使它们在最小零频率功耗状态下运行,然后接受这一结果。一种更好的办法是使用隔离接口,它的功耗极低,因此无需操心电源管理问题。

 

图7 医疗监护仪

有一个专利的医疗监护仪示例,如图7所示,它将周期性通过UART连入电脑。为了安全起见,需要进行隔离,以便使不受控制的计算机不会意外地向病患注入电流,微控制器会处理隔离接口的全部电源管理。该例中,如果分析采用1442这类器件的接口,那么可以实现使电池长时间供电等这类优势,因为静态功耗几乎为零,并且UART的工作无需依靠专用电源线路,只需从数字电路获取电能即可。再次比较此处功耗,可取一枚常用的纽扣电池作为电源,比如CR2032。

采用隔离式UART时的电池寿命如表1所示。这种CR2032纽扣电池的容量一般是225mAh。如果计算运行一个四线式数字接口所需的功耗,则假设它的活跃时间是1%,并且活跃时需要以大约10kbps的速率运算数据,大家可以自行计算接口耗尽电池电能的总时间。如果是数字光耦合器的话,那么32个小时就会耗尽电池。如果是PIN二极管或光电晶体管型光耦合器,可以把它们置于被动状态,实现极低的功耗和4000小时工作时间,看上去很不错,电池可以工作4000小时,实际应用会消耗掉一部分这些电源,但ADI依然有办法应付。

 表1 采用隔离式UART时的电池寿命
 
 

如果是数字隔离器,那么工作时间是166小时,虽然并非十分理想,但至少它们速度快,而且比高速光耦合器好很多。感性耦合器,它们比容性耦合器要好一点,但也只是好两倍而已。如果我们采用最新的ADuM 144x系列来构建接口,那么功耗将下降到如此程度,即电池寿命从4000小时一跃而为24000小时,也就是大约28年。在这种功耗水平下,可以将电池当成永久而不用替换的。

以太网供电应用始终通过I2C控制接口,实现实际POE控制器芯片与网络路由器等设备之间的对接。POE控制器直接采用-42V电源供电,该电源是以太网电源。然而,控制接口通常工作在最高3.3V,且以负电源为基准,因此很多控制器芯片会集成内部LDO并提供1mA~2mA电能,以便从42V总线获得3.3V总线电压。问题在于,哪怕几个3mA对总线来说都是大量的功耗,因为大部分功耗以热量的形式浪费了。仅仅是为了得到几mA而降至3.3V,就会浪费从42V总线上获取的电源的95%。另一种方案是在42V总线上使用开关调节器。它们成本较高,使用隔离式DC-DC并从原边为该低压控制总线供电,但同样成本较高且元件数较多。

POE四端口控制器的应用如图8所示。用于I2C总线的以太网供电实际上是隔离的,因此它们传输的信号是单向的。它对于采用我们的四通道隔离器产品来完成设计而言是很方便的。只需在其副边额外使用一个缓冲器,将数据输入和数据输出信号重新组合即可。这里我再次回顾了所有这些技术,过此接口传输了一个100kb I2C信号,该功耗转换为驱动这些电路的POE控制器上消耗的一定热量。如果使用高速光耦合器,那么POE芯片功耗将接近0.5W,而大部分设计人员都不会愿意针对此功耗设计冷却方案,甚至高速PIN或晶体管型光耦合器都会产生大量功耗。

而对于容性开关键控,情况则稍有好转。感性,甚至更好,而新超低功耗产品,ADI实现了从0.5W到降低至1mW!这样的总线功耗足够低,可以直接使用POE控制器。如果POE控制器内部不完成此操作,可以采用齐纳二极管和电阻来吸取电源,且功耗较低。这样便能实现一个非常好的组合,允许使用成本不高的现有元器件。

图8 POE四端口控制器的应用和功耗比较

结论

综上所述,新的124x和144x器件降低了这些数字隔离器如此之多的功耗,以至于之前勉强可实现,甚至完全不可实现的应用现在都能轻松实现。这些器件可在直流到高达2Mbps的范围内实现这些性能,该范围内已有大量低功耗应用,并且还将不断扩充。很多这类低功耗应用的工作频率低至kHz范围内,因此哪怕在低功耗水平,这些器件的工作范围也要宽得多。这些隔离器具有与较老的iCoupler器件相同的隔离性能,并且可以满足相同的安全要求。

问答选编

问:ADI的光耦合器的速度能达到多少?

答:ADI的隔离器是使用磁耦技术的,目前最高可以达到150Mbps,型号为ADuM344x。

问:数字隔离器的功率水平怎么样?

答:目前ADI的数字隔离器静态功耗能够达到μW级别,在1Mbps的速率下功耗也是1mW以下。

问:光隔离和变压器隔离在性能上有什么不同?

答: 普通的光隔离的速度不能做的很高,温度范围一般也只能到85℃,另外有CTR的衰减,存在一定的不稳定性。在性能方面,变压器隔离要好很多,还具有工作稳定、工作寿命长、集成度高等特点。

问:请问该隔离方式的传输距离能达多少?

答:ADI传输的是数字信号,具体的传输距离要根据不同的应用,比如ADI的RS485产品的隔离,传输距离能够满足485的长距离传输。这个主要还是由总线上的传输协议决定的。

问:请问ADI的信号隔离器最多有几路?

答:现有产品中最多的是6路。

问:ADI有没有模拟隔离产品?

答:目前我们模拟隔离放大器有AD202、AD215等型号。

问:使用ADuM3100 iCoupler时如何进行电源设计?

答:要求两侧的供电电压是隔离的,其实也可以使用带隔离电源的器件,如ADuM5400。

问:是否有可以用在电机驱动上的隔离器?

答:有的。

问:温度上升对其性能是否具有影响?

答:只要在ADI的器件的温度工作范围内就可以,性能都能满足手册上标明的范围。

  • 分享到:

 

猜你喜欢

  • 主 题:平稳控制与位置服务中至关重要的ADI MEMS IMU
  • 时 间:2020年07月28日
  • 公 司:Arrow&ADI

  • 主 题:ADI音频产品和方案介绍
  • 时 间:2020年07月30日
  • 公 司:ADI

  • 主 题:ADI基于ADPD188BI的烟雾探测器集成解决方案
  • 时 间:2020年08月12日
  • 公 司:Arrow&ADI